廃棄物学

2年後期(選択)科目 宮脇健太郎 第5回 焼却(2)燃焼計算、炉形式など

燃焼に係わる理論量の定義

- 理論酸素量:燃料を完全燃焼させるのに必要な酸素量
- 理論空気量:燃料を完全燃焼させるのに必要な空気量
- •理論燃焼ガス量:理論空気量によって完全燃焼させた ときに生成する燃焼ガス量
 - 水蒸気を除いた乾き燃焼ガス量
 - 水蒸気を含む総量としての湿り燃焼ガス量

計算 理論酸素量

- •理論酸素量 O_0 [kmol/kg-燃料]
- $O_0 = (c/12) + (h/4) + (s/32) (o/32)$

元素	原子量	完全燃焼反応式
С	12	C+O ₂ =CO ₂
Н	1	H+1/4O ₂ =1/2H ₂ O
S	32	S+O ₂ =SO ₂
0	16	O-1/2O ₂ =0
N	14	N=1/2N ₂

計算 理論空気量

- 理論空気量L₀ [m³_N/kg-燃料]
- $L_0 = \{(c/12) + (h/4) + (s/32) (o/32)\} \times (22.4/0.21)$ = 8.89c+26.7(h-o/8)+3.33s
- •酸素1kmolは22.4m³N、酸素体積分率21%

燃焼空気量

- ・実際の燃焼 理論空気量 → 空気不足
 - ・未燃ガス、煤(すす)が発生 → 理論値より多く
- 空気比(air ratio) または空気過剰率
 - 理論空気量の何倍の空気を供給するか
- 燃焼空気量 $L=\lambda \cdot L_0$ $[m^3_N/kg-燃料]$
- 気体燃料(都市ガス) $\lambda = 1.1 \sim 1.3$ 、液体燃料(重油) $\lambda = 1.2 \sim 1.4$ 、固体燃料(石炭) $\lambda = 1.2$ (微粉炭)~(2.0)

燃焼空気量 (廃棄物の場合)

- ごみ質、装置、炉形式、性能により異なる
- ごみ質が悪い $\lambda \rightarrow$ 大、ごみ質良い $\lambda \rightarrow$ 小
- 連続燃焼式ストーカ炉 $\lambda = 1.7 \sim 1.9$ (1次燃焼空気 $\lambda = 1.2 \sim 1.4$ 、これに2次燃焼空気を加算)

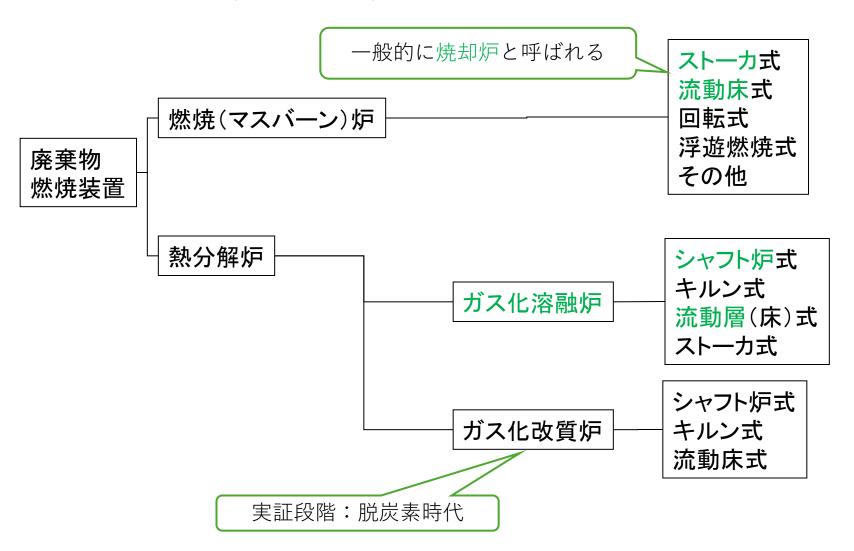
最新 熱効率、排ガス量低減 $\lambda = 1.2 \sim 1.5$ の場合が多い(ガス化溶融炉含む)。

- 排ガス中酸素濃度より、空気比概略値がわかる。
- $\lambda = 21/(21-[O_2])$
 - [O₂]:乾き燃焼ガス中の酸素濃度[%]

燃焼ガス量とガス組成

- ・廃棄物1kg中に、炭素c[kg]、水素h[kg]、硫黄s[kg]、酸素o[kg]、窒素n[kg]、水分W[kg]
- ・燃焼反応(シート3参照)の生成物、空気比λでの余 剰酸素O₂と、空気中窒素N₂が生じる
- ◆湿り燃焼ガス量V_W[m³_N/kg]

燃焼ガス量とガス組成(続き)


◆湿り燃焼ガス量V_W[m³_N/kg]

$$V_W$$
=22.4×(c/12) : CO_2 の生成
+22.4×{(h/2)+(W/18)} : H_2 Oの生成
+22.4×(s/32) : SO_2 の生成
+0.21(λ -1)× L_0 : 余剰の O_2
+0.79 λ × L_0 +22.4×(n/28): 空気 N_2 +生成 N_2
=1.867c+11.2h+1.244W+0.7s+0.8n
+(λ -0.21) L_0

燃焼ガス量とガス組成(続き)

- ・乾き燃焼ガス量 V_D [m_N^3/kg] (水蒸気なし) $V_D=1.867c+0.7s+0.8n+(\lambda-0.21)L_0$
- •焼却炉、ボイラーなどの設備設計では湿り燃焼ガス量を 用いる
- ガス分析では乾きガス基準(水蒸気は除去)
 - $CO_2 = 1.867 \times (c/V_D) \times 100$ [%]
 - $O_2 = 0.21 \times \{(\lambda 1) \cdot L_0\} / V_D \times 100[\%]$
 - $N_2 = \{0.79 \lambda \cdot L_0 + 0.8n\} / V_D \times 100[\%]$

燃焼装置 (炉形式)

・ごみ焼却施設の種類別施設

種類	焼却(ガス化溶融・改質、 炭化、その他以外)		ガス化溶融・改質		炭化		その他		合計	
年度	施設数	処理能力 (トン/日)	施設数	処理能力 (トン/日)	施設数	処理能力 (トン/日)	施設数	処理能力 (トン/日)	施設数	処理能力 (トン/日)
H26	1, 043	162, 982	99	18, 633	4	176	16	1, 720	1, 162	183, 511
H27	1, 020	161, 140	103	19, 412	5	206	13	1, 133	1, 141	181, 891
H28	999	159, 439	102	19, 524	5	206	14	1, 328	1, 120	180, 497
H29	980	158, 304	106	20, 648	5	206	12	1, 313	1, 103	180, 471
H30	957	155, 487	108	21, 331	5	206	12	1, 313	1, 082	178, 336
R1	945	154, 092	108	21, 376	5	206	12	1, 328	1, 070	177, 001
R2	935	153, 798	105	21, 001	4	136	11	1, 246	1, 055	176, 180
R3	905	152, 764	107	21, 570	4	136	11	1, 246	1, 027	175, 715
R4	897	152. 004	106	21. 405	4	136	9	1. 101	1. 016	174. 646
R5	888	151, 599	1 05	21, 929	4	136	7	935	1, 004	174, 598
(民間)	/ 282	78, 320	/ 12	3, 069	7	295	16	19, 717	317	101, 401
					参考	H12年度	(2000)	施設数	<u> 1715</u>	

10.5%

環境省 日本の廃棄物処理令和5年度

88.4%

(シャフト58, 流動床38, 回転式9) 環境省施設整備状況R5

(ストーカー734, 流動床165, 固定床18, その他87)

ごみ焼却施設の処理方式 (溶融含む)

炉型式	全連続式		准連続式		機械化バッチ式		固定バッチ式		合計	
	施設数	処理能力	施設数	処理能力	施設数	処理能力	施設数	処理能力	施設数	処理能力
年度		(トン/日)		(トン/日)		(トン/日)		(トン/日)		(トン/日)
H26	662	162, 480	207	14, 775	258	5, 640	34	217	1, 161	183, 111
H27	674	162, 745	192	13, 471	245	5, 489	30	186	1, 141	181, 891
H28	679	162, 512	184	12, 833	229	4, 997	28	154	1, 120	180, 497
H29	686	163, 760	170	11, 822	220	4, 738	27	151	1, 103	180, 741
H30	687	162, 858	162	10, 803	210	4, 553	23	123	1, 082	178, 336
R1	685	161, 761	161	10, 669	203	4, 451	21	121	1, 070	177, 001
R2	684	161, 364	159	10, 409	191	4, 286	21	121	1, 055	176, 180
R3	682	161, 997	145	9, 519	181	4, 088	19	112	1, 027	175, 715
R4	682	161, 256	143	9, 421	173	3, 860	18	109	1, 016	174, 646
R5	681	161, 849	137	8, 928	169	3, 705	17	116	1, 004	174, 598
(民間)	223	97, 265	21	1, 115	28	2, 408	45	612	317	101, 401

67.8% 92.7%

環境省 日本の廃棄物処理令和5年度

13

流動床式 バブリング 定 層 循環流動層↓▲ 流動層 サイクロン 循環砂 気泡破裂 気泡 重いごみ 砂 0.00 分散板 空気 空気 空気 -輸 層-送 固定層-流 動 層 流動化開始速度 終端速度 粒子循環流 速 [cm/s] (log)

図2・2 流動層原理図2)

キルン式

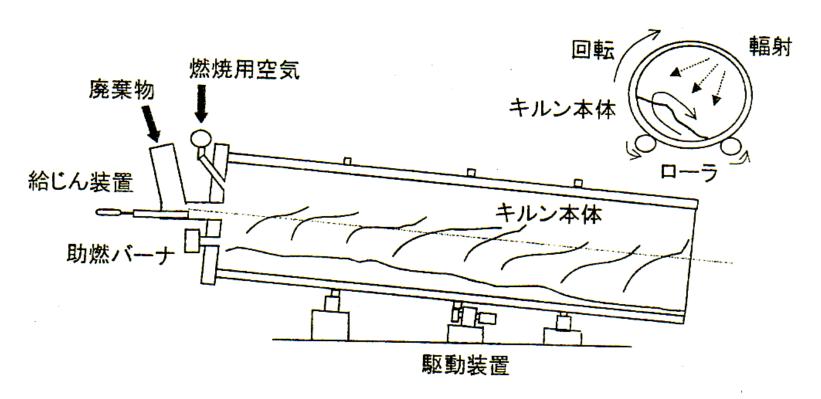
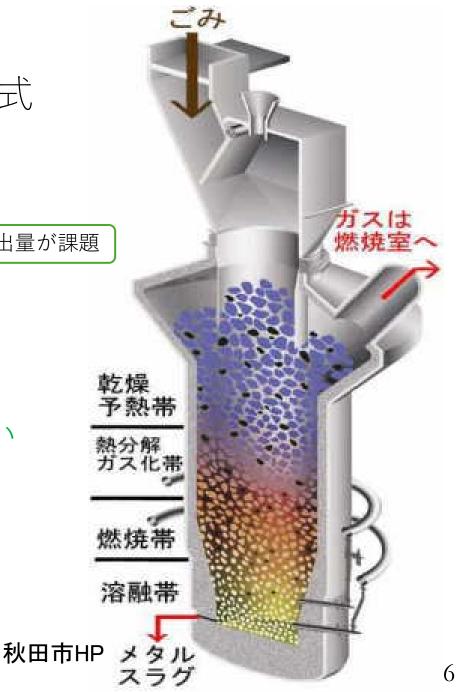


図 6.2-5 ロータリーキルン式燃焼炉(並流式)

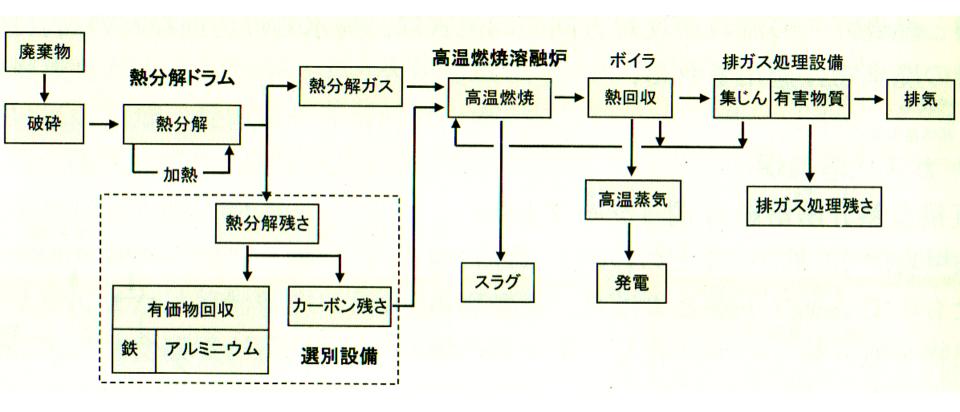
溶融炉 直接型熱分解溶融方式

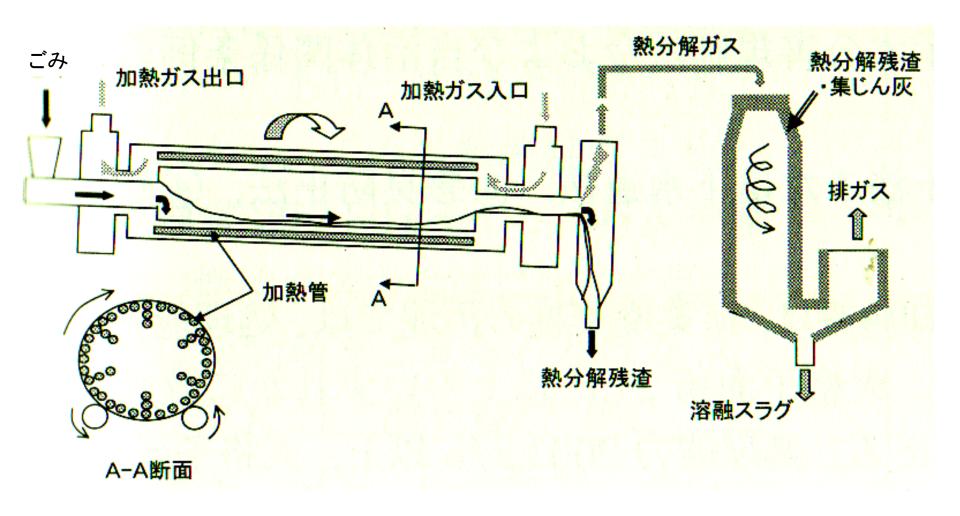
シャフト炉

特徴

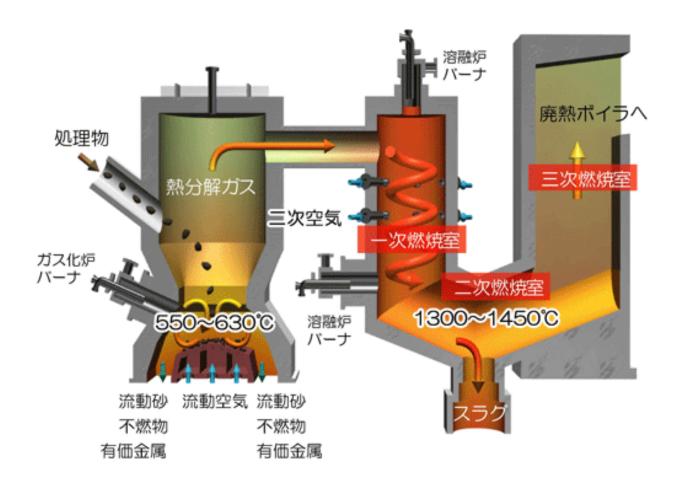

• 高炉技術を適用

CO₂排出量が課題


- ・コークス、石灰石使用
- 高温高酸素濃度
- ごみ質制限なし
- ランニングコストが高い
- スラグが良質


埼玉県HP

溶融炉 直結型熱分解溶融方式 (キルン式、流動床式)


キルン式熱分解溶融炉

流動床式熱分解溶融炉

流動床(左)で熱分解

熱分解ガス井炭化物が燃焼室(右)送られ溶融

荏原環境プラント(株)HPより

直結型熱分解溶融方式の特徴

- 熱分解温度:450°C(キルン式)、600°C(流動床)
- •溶融温度:1300~1400°C
- 空気比: 1.2~1.3
- 高温燃焼、ダイオキシン類低減
- 自己熱溶融(と言われたが。。。)
- 金属回収、スラグ利用(資源化)

溶融炉のまとめ

焼却炉の1割程度

- 大規模施設は少ない → 東京都には熱分解(ガス化) 溶融炉は2炉(23区1炉、多摩地区1炉)、焼却炉+灰溶 融3炉(近年休止中)
- ランニングコストが高いといわれている。
- •2000年頃、国を挙げた技術開発が進められた。
- ダイオキシン対策として、一時有名になった。
- 新技術として、ガス化改質炉も開発中 (熱分解後の可燃性ガス回収→発電など)

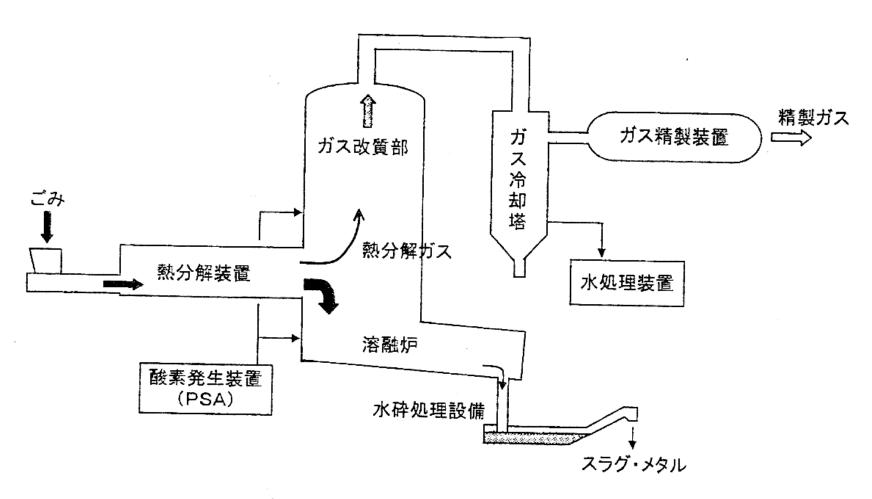
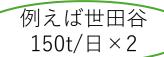


図 6.2-10 ガス化改質炉

燃焼装置まとめ


ストーカ、流動床 (焼却)

- 実績多く、技術的確立、運転管理容易
- 小規模から大規模

熱分解(ガス化溶融)

- •自己熱溶融 → 外部エネルギー不要
- 歴史浅い、未知数
- 150トン/日程度 スケールアップが課題

•選択:ごみ質、ごみ量、残渣処理、施設規模、ランニングコスト、運転管理の容易性などで決定

演習(時間内課題:LMS提出)

- 燃焼炉の主な3種として、()式 (火格子)、()式、ロータリーキ ルン式などが挙げられる。
- 直結型熱分解溶融方式の特徴としては,高温燃焼,ダイオキシン類低減,()溶 融,金属回収、()利用(資源化)があげられる。
- 直接型熱分解溶融方式(シャフト炉)は、高炉技術を用い、()、
 ()を使用する。ランニングコストは()。スラグは良質である。CO₂排出量に課題がある。

演習 1)時間内:LMS提出 2)完成版:LMS提出

- 1) 第3回課題 2)の可燃ごみ1kgを燃焼させる為に必要な燃焼空気量Lを求めよ、ただし、空気比 λ は1.5とする。
- 2)上の問題の可燃ごみ1kgを空気比 $\lambda = 1.5$ で燃焼させたとき、発生する湿り燃焼ガス量 V_W を求めよ。さらに乾きガス基準における CO_2 、 O_2 、 N_2 ガスの組成をそれぞれ計算せよ。
 - 計算演習は、できたところまで時間内でLMS提出
 - 完成したものを、後日、別レポートでLMS提出