持続型社会と開発倫理

第8回 資源循環(再生利用)について知る 宮脇健太郎

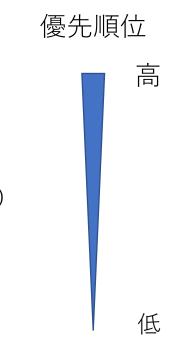
一般廃棄物の処理・処分

- •排出(分別)
- 収集・運搬
- •中間処理 (焼却, 破砕)

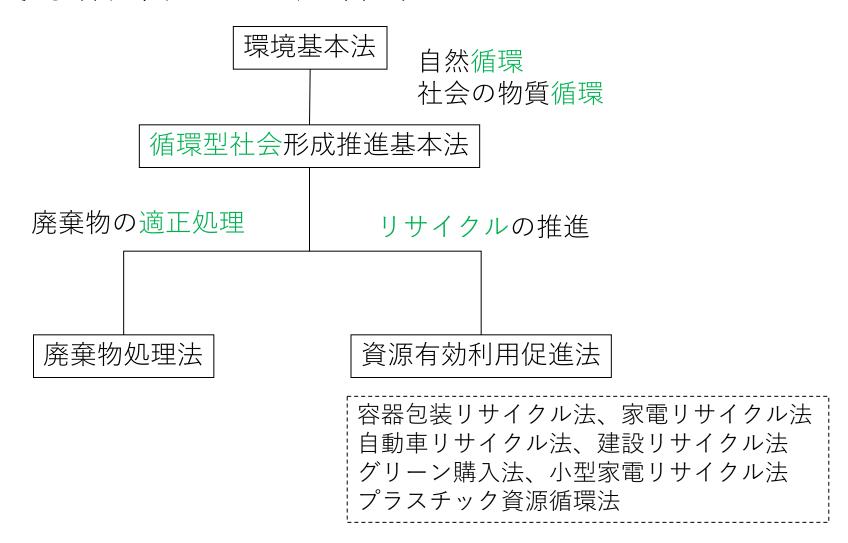
• 最終処分

• 資源化(再生利用:リサイクル)

本日の内容


3 R

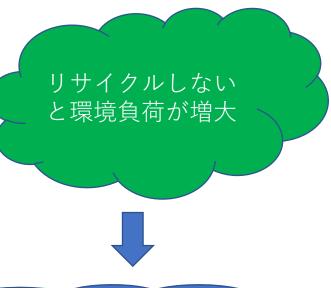
- Reduce (発生抑制)
- Reuse(再使用)
- Recycle (再生利用)
 - + Renewable


(プラスチック再生利用、バイオプラスチック) 「プラスチック資源循環促進法」における

• 3 Rできない場合, 適正処理

• 循環型社会形成推進基本法で示される

資源循環関連の法体系



リサイクルの意味

なぜ必要か?

- リサイクルをしないと→
 - ごみ処理する量が増える
 - ・新聞、古紙回収なし→ごみは2割程度増加
 - 天然資源の消費量が増える
 - 古紙=木材, アルミ=ボーキサイト
 - エネルギー使用量が増える
 - ・回収アルミ エネルギー消費量3%程度
 - スチール缶、古紙など エネルギー1/3~1/5
 - 経済活動上流 資源採掘,素材製造プロセス
 - エネルギー消費量, 廃棄物発生量 大
 - ・エネルギー消費 → 二酸化炭素
 - 資源採掘 → 自然破壊

「ライフサイクル」を考える

リサイクルの分類

一般的分類

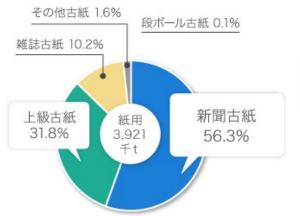
	分類	例
リユース(再使用)		ビール瓶,古着,中古家具・家電
リサイクル	マテリアル(素材)リサイクル	ガラス瓶→ガラス, 古紙→紙, ス チール缶→鋼材, ペットボトル→ シート・繊維
	ケミカル(化学的)リサイクル	プラスチックのモノマー化,油化, ガス化
	サーマル(熱的)リサイクル	ごみ発電, RDF(ごみ固形燃料), RPF(紙・プラ固形燃料)

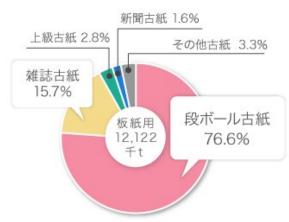
変換方法と利用方法が混在

ガラス, 古紙, 有機物など

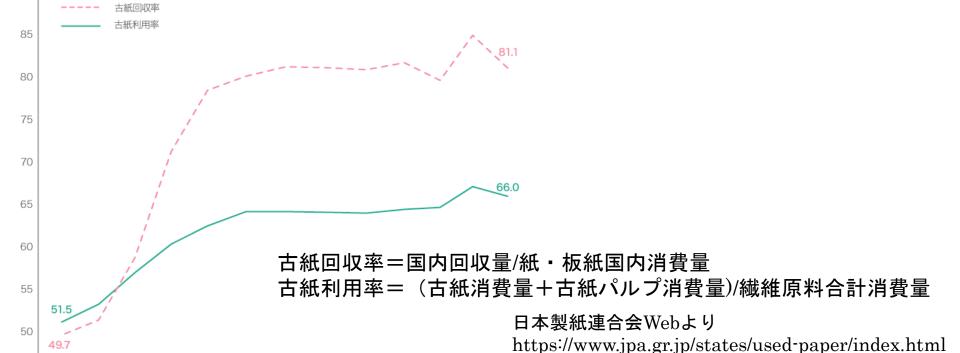
	マテリアル(元の素材)		マテリアル	エネルギー
	元の用途	他用途	(別の物質)	(熱・電力)
特になし	リターナブル瓶			ごみ発電
メカニカル 破砕・再成型など	ガラス瓶,スチ	ニール缶, 古紙	路盤材,建材	RDF
ケミカル 分解・還元など				
サーマル 燃焼・生成など			焼成タイル,炭化	
バイオロジカル 生物分解・発酵など			堆肥化	メタン発酵

ダウンリサイクル ダウンマテリアルリサイクル **カスケード**リサイクル 垂直リサイクル

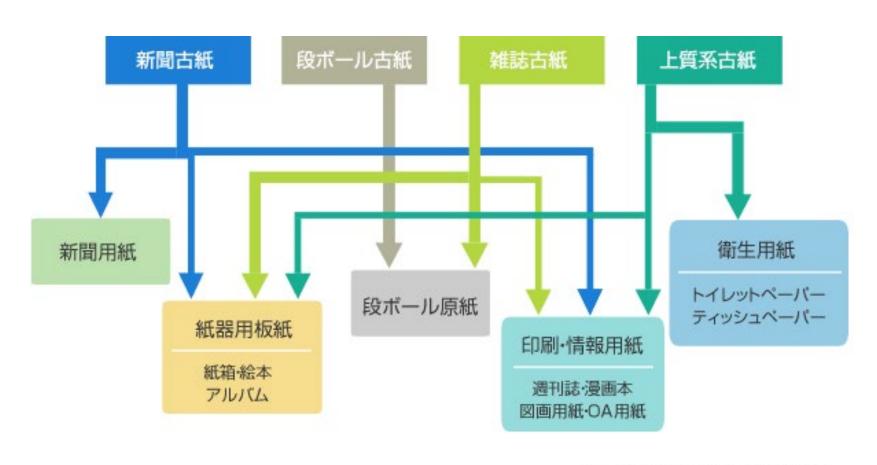

プラスチック


	マテリアル	(元の素材)	フィードストック	エネルギー
	元の用途	他用途	(原材料)	(熱・電力)
特になし				セメント焼成
メカニカル 破砕・再成型など	マテリフ	アル利用		RPF
ケミカル 分解・還元など	モノマ	7一化	高炉還元	
サーマル 燃焼・生成など				ガス化
バイオロジカル 生物分解・発酵など				

ダウンリサイクル ダウンマテリアルリサイクル


カスケードリサイクル 垂直リサイクル 古紙リサイクル

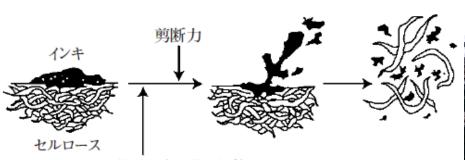
(回収率・利用率)


資料:経済産業省「生産動態統計」

資料:経済産業省「生産動態統計」

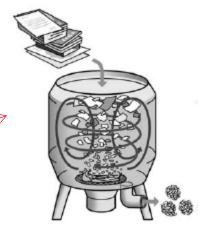
21年

主要な古紙の用途比較


資料: (公財) 古紙再生促進センター

日本製紙連合会HP

古紙リサイクル技術


- パルパー (粉砕)
- フローテータ(界面活性剤での脱墨)
- スクリーン,漂白

脱墨剤(湿潤·浸透)

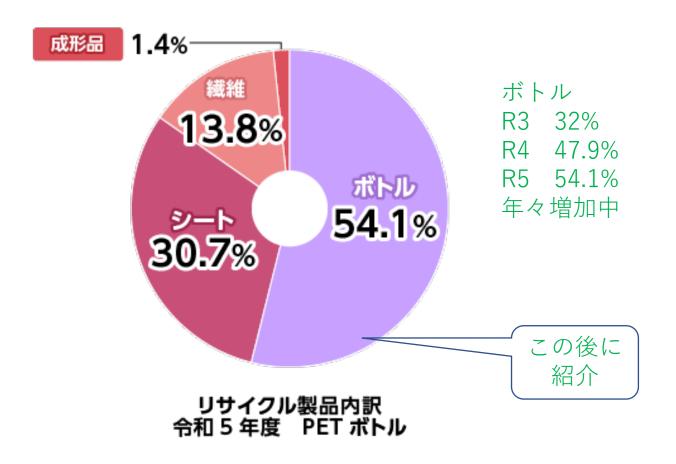
図:古紙ハンドブック 写真:日本製紙HP

プラスチックリサイクル(一般廃棄物+産業廃棄物)

- 769万トン(2023)
 - 使用済品710万トン, 生産加工ロス品58万トン
 - ・ 埋立 24万トン 3% → 未利用81万トン11%
 - 単純焼却 58万トン8%
 - 熱利用焼却 47万トン 6%

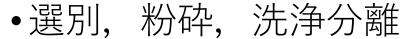
- 有効利用89%
- 発電焼却 236万トン 31%(サーマルリカバリー)
- 固形燃料/セメント原燃料 195万トン 25%
- ガス化(燃料利用) 14万トン2%
- 高炉・コークス炉原料/ガス化/油化

(ケミカルリサイクル) 26万トン3%


• 再生利用(マテリアルリサイクル)171万トン 22% 高度利用

出典: (社) プラスチック循環利用協会 https://www.pwmi.or.jp/column/column-188/

PETボトルリサイクル



日本容器包装リサイクル協会Webサイトより https://www.jcpra.or.jp/law/goals/pla-bottle.html

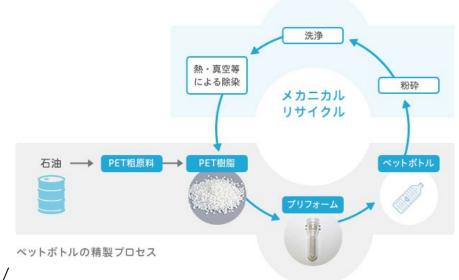
PETマテリアルリサイクル (メカニカルリサイクル)

自治体

- ●分別収集,選別,圧縮 → ベール
- •保管
- リサイクル事業者

- •フレーク:PETボトルを8mm角に粉砕し、洗浄した もの、作業服、卵パック、成形品などの原料
- •ペレット:フレークを溶融し、小さな粒状に加工したもの、繊維にする場合に使用

フレーク



ペレット

日本容器包装リサイクル協会

ボトルtoボトル (メカニカルリサイクル)

- 協栄産業+サントリー (2011~)
 - 再縮合重合、減圧・加熱処理でのフレーク内部不純物除去
- リペットボトル 再生PET樹脂50%→100%
 - ウーロン茶, 日本茶など (年6万トン程度2017)
- サントリー、協栄産業、SIPA社、EREMA社
 - FtoPダイレクトリサイクル技術
 - 再生PET樹脂のラベルも

参考:サントリー

https://www.suntory.co.jp/eco/teigen/package/

https://www.suntory.co.jp/company/csr/highlight/201804/

ボトルtoボトル (ケミカルリサイクル)

- 化学分解・精製 → 重合(モノマーリサイクル)
- 高純度原料が得られる
- ・エネルギー 石油由来と同等
- •安全衛生性 問題なし

	ボトルtoボトルPET樹脂	石油由来PET樹脂
資源エネルギー	0 (MJ/kg)	35 (MJ/kg)
工程エネルギー	31 (MJ/kg)	28 (MJ/kg)
エネルギー負荷合計	31 (MJ/kg)	63 (MJ/kg)

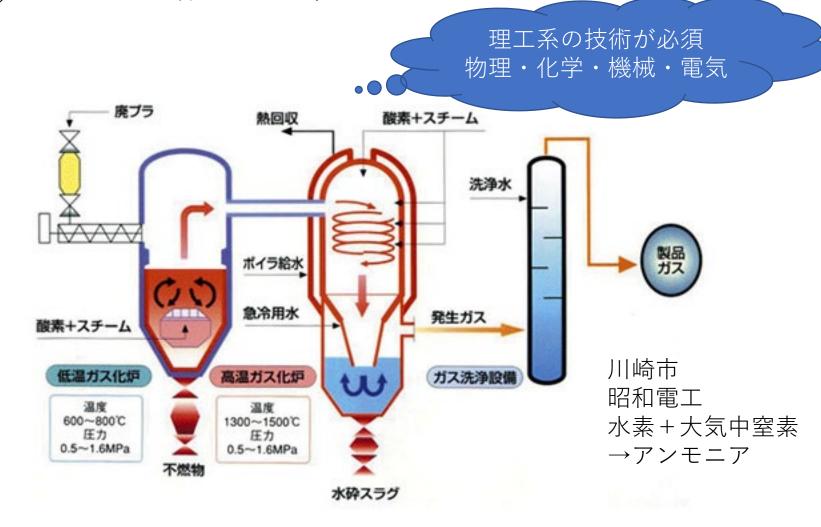
原料・モノマー化

- PETボトルの化学分解((株) 帝人, (株) アイエス)
- PETボトル 粉砕・洗浄
- エチレングリコールを加え、BHET (ビスヒドロキシエチレンテレフタレート) に解重合
- 粗BHETをメタノール中で再結晶
- DMT(ジメチルテレフタレート)蒸留工程 → 高純度DMT
- •加水分解 TPA(テレフタル酸)
 - → PET樹脂
- 6万トンのPETボトルから5万トンのPET樹脂
- ・消費エネルギー 石油原料に比べ、約8割減
- 2022現在 日本環境設計(株)で実施中

その他のプラスチック資源化技術の事例

ガス化による化学工業原料化(ケミカルリサイクル)

- 廃プラ ガス化 → H₂,
 (ガス化溶融+ガス精製)


 - 廃プラ 破砕・簡易成形
 - 低温ガス化(内部循環型流動床)酸素,蒸気を供給→部分酸化
 - 低温ガス化炉で生成された炭化水素 (HC), CO, CO_2 , H_2 を主成分とするガス \rightarrow 高温ガス化炉 \longrightarrow H_2 HC分解 塩ビ由来
 - 高温ガス化 (改質) \longrightarrow CO, CO₂, H₂ガス主成分
- 高温ガス化炉下部 水冷却 → スラグ化、塩化水素除去
- 塩化水素は、塩化アンモニウムとして回収
- 精製ガスCO+H₂→メタノールなど
- **CO** → 酢酸, ギ酸
- **H**, → アンモニア

無機物はガラス状のものに

蒸し焼き

例)昭和電工KPR(ガス化手法) https://www.sdk.co.jp/kpr/process.html 夜景で有名です。

例)加圧二段ガス化システム

課題

- プラスチックリサイクルについて、内容を調べ、簡単にまとめて、自分の意見も考えてみよう。
- 明星LMS 「レポート」
- •レポート(第8講)を選択し、200字程度で記入してみましょう。
- 日曜夜までに提出してください。