持続型社会と開発倫理

第6回 資源について考える

担当:宮脇健太郎

資源循環に関する内容(担当:宮脇健太郎)

- 第6回 資源について考える
- 第7回 ごみ問題と循環型社会
- 第8回 資源循環(再生利用)について知る
- 第9回 廃棄物管理事例(1)収集運搬・処理
- 第10回 廃棄物管理事例(2)最終処分

To ensure sustainable consumption and production patterns

自己紹介:

専門分野:廃棄物工学

(最終処分場、有害物質制御)

研究室Webサイト

https://kenkyu.hino.meisei-

u.ac.jp/miyawaki/

|資源循環|

21世紀環境立国戦略(2007)より加筆

気候変動とエネルギー・資源

温室効果ガス排出量 の大幅削減

低炭素社会

→ 脱炭素

<mark>ーボンニュー</mark>トラル

持続可能な社会 → サステナブル、持続型社会へ

地域生態系と共生して, 持続的に成長・発展する

経済社会の実現

→ +Renewable

3Rを通じた 資源循環

循環型社会

気候変動と生態系

生態系と環境負荷

自然共生社会 → 近年、地域共生循環圏

自然の恵みの享受と継承

資源(resource)とは

人間の生活や産業等の諸活動の為に利用可能なもの

物的資源(天然資源、観光資源)、人的資源、経済的資源など

天然資源

- 水資源
- 鉱物資源
 - 化石燃料
 - 金属資源
 - その他(ダイアモンド、石灰石、石英、リン鉱石など。)
- 森林資源
- 水産資源
- 海底資源
- 遺伝資源

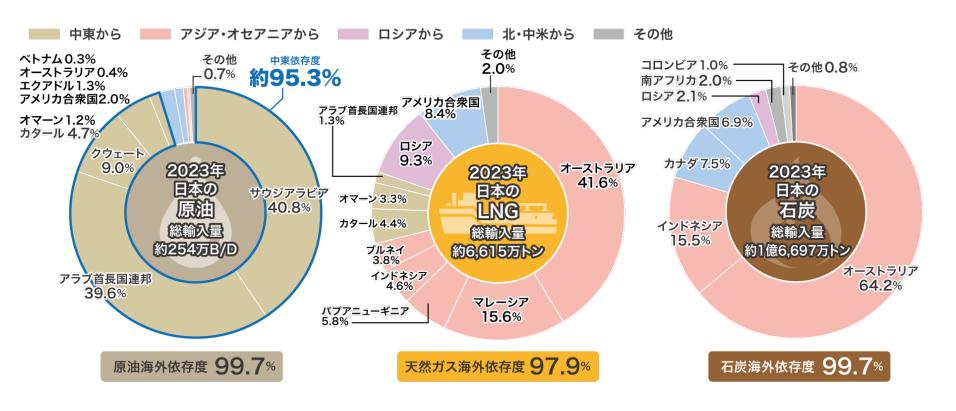
項目:Wikipedia参照

鉱物資源の可採年数

石油確認埋蔵量:約1.7兆バレル

化石燃料

- 石油 53.5年 (2020)
- 石炭 139年 (2020)
- 天然ガス 48.8年(2020) 金属資源・ウラン 130年?


シェールオイルにより延長

高圧破砕:シェール(頁岩) に閉じ込められていたものを 取り出す技術

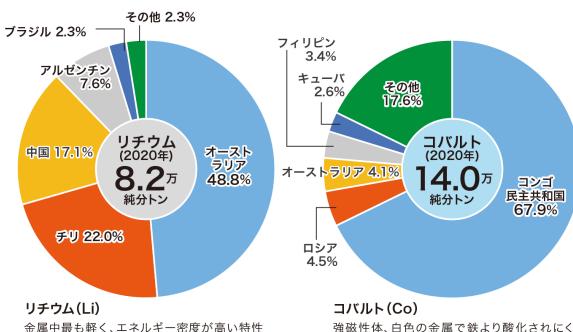
シェールガスにより延長

- NEA:Uranium 2022: Resources. Production and Demand
- Fe70, Cu 35, Zn 18, Pb 20, Sn18, Ag 19, Au 20, Ti 128, Mn 56, Cr 15, Ni 50, Co 106, Nb 47, W 48, Mo 44, TI 95, In 18
 - 環境省HP:環境白書H23年度より
- 可採年数 = 確認可採埋蔵量/年生産量

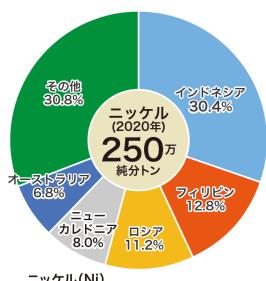
化石燃料の輸入

資源エネルギー庁webサイト https://www.enecho.meti.go.jp/about/pamphlet/energy2024/02/

化石燃料の今後


- 2050 脱炭素社会を目指し
- 再生可能エネルギー
- 自動車など交通機関のEV化
- バイオ燃料、合成燃料、水素燃料、メタネーション
- プラスチック製品のバイオプラスチックへの代替

- 世界的需要は、減少
- 特に日本は使用削減を加速する必要


理工系の技術が必須 物理・化学・機械・電気

鉱物資源(金属など)の輸入(2020)

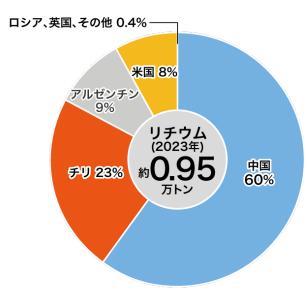
強磁性体、白色の金属で鉄より酸化されにく く、酸やアルカリにも強い。

携帯電話、ノートパソコン、EV等に使用される リチウムイオン電池の正極材の用途が最も多 い。

ニッケル(Ni)

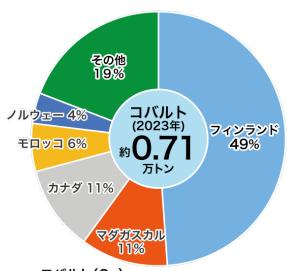
クロムなどとの合金によるステンレス鋼や耐熱 鋼等が最大の用途で、硬貨から電子産業まで 幅広い活躍。ニッケル化合物は、ニッケル水素 電池、リチウムイオン電池の正極材等として使 用される。

資源エネルギー庁webサイト https://www.enecho.meti.go.jp/about/pamphlet/energy2021/001/


次のページと見比べよう(2023年)

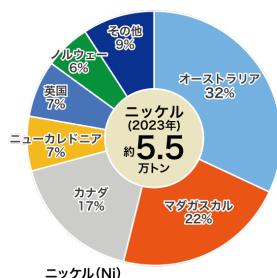
を活かし、EVのバッテリーやノートパソコン等

のモバイル用電源であるリチウムイオン電池材


料として欠かせない存在。

鉱物資源(金属など)の輸入(2023)

リチウム(Li)


金属中最も軽く、エネルギー密度が高い特性 を活かし、EVのバッテリーやノートパソコン等 のモバイル用電源であるリチウムイオン電池材 料として欠かせない存在。

コバルト(Co)

強磁性体、白色の金属で鉄より酸化されにく く、酸やアルカリにも強い。

携帯電話、ノートパソコン、EV等に使用される リチウムイオン電池の正極材の用途が最も多 い。

クロムなどとの合金によるステンレス鋼や耐熱 鋼等が最大の用途で、硬貨から電子産業まで 幅広い活躍。ニッケル化合物は、ニッケル水素 電池、リチウムイオン電池の正極材等として使 用される。

資源エネルギー庁webサイト https://www.enecho.meti.go.jp/about/pamphlet/energy2024/02/

鉱物資源(金属など)は輸入国が大きく変動する

レアメタル34鉱種

和製英語

リチウムイオンバッテリー:LIB などで使用

非鉄金属のうち、希少な金属(リチウムLiなど)のこと

レアアース (rare-earth elements: REE: 希土類元素)17元素 (ネオジムNd、ジスプロシウムDy他)

EVのモーター(磁石)などで使用 輸入元:中国が主

- レアメタル34鉱種(55元素)について、国家備蓄+民間備蓄 (次シートの周期表参照)
- 海外「マイナーメタル(minor metal)」という。
- •国内「都市鉱山」(リサイクル関連の分野で使われる)という キーワードも出ている。

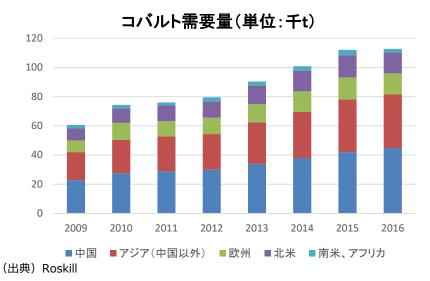
レアメタルなど

族	ΙA	ΙА	шв	IV B	VВ	VI B	WI B	VШ			ΙВ	ΙВ	шА	IV A	V A	VI A	VII A	0
周期	アル カリ族	アル カリ 土族	希土族	チタン 族	バナジ ウム族	クロム 族	マンガ ン族		族(4月 族(5·6月	割期) 割期)	銅族	亜鉛族	アルミ ニウム 族	炭素族	窒素族	酸素族	ハロ ゲン族	不活性ガス族
	1 H																	
1	水素	鉄、ベースメタル																
	3 Li	4 Be	4 Be 貴金属										5 B	6 C	7 N	8 0	9 F	10 Ne
2	リチウム	ヘ゛リリウム	1 77 77						- -					炭素	チッ素	酸素	フッ素	ネオン
			その他レアメタル															
	11 Na	12 Mg									13 AI	14 Si	15 P	16 S	17 CI	18 Ar		
3	ナトリウム	マグネ ケイ素 リン イオウ 塩									塩素	アルゴン						
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
4	カリウム	カルシウム	スカンジウム	チタン	ハ゛ナシ゛ウム	クロム	マンガン	鉄	コバルト	ニッケル	銅	亜 鉛	ガリウム	ケ゛ルマ ニウム	ヒ素	セレン	臭素	クリフ°トン
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
5	ルビジウム	ストロンチウム	イットリウム	シ゛ルコニウム	ニオブ	モリフ゛テ゛ン	テクネ チウム	ルテニウム	ロジウム	パラジウム	銀	カト゛ミウム	インシ゛ウム	スズ	アンチモン	テルル	ヨウ素	キセノン
	55 Cs	56 Ba	57 ~ 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
6	セシウム	バリウム	ランタノイト	ハフニウム	タンタル	タングステン	レニウム	オスミウム	イリジウム	白 金	金	水銀	タリウム	鉛	ビスマス	ホ°ロニウム	アスタチン	ラドン
	87 Fr	88 Ra	89~	104 Rf	105 Db	106 Sg	107Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
7	フランシウム	ラジウム	103 アクチノイド	ラサ゛ホーシ゛ウム	ト゛フ゛ニウ ム	シーホ゛キ゛ウム	ホ゛ーリウ ム	ハッシウム	マイトネリウム	ダルムスタ チウム	レントゲニ ウム	コペルニシ ウム	ニホニウム	フレロビ ウ ム	モスコビ ウ ム	リバモリウ ム	テネシン	オガネソン

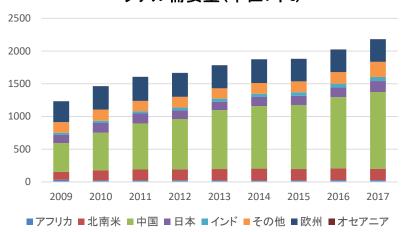
	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
ランタノイド	ランタン	セリウム	プラセオシ゛ム	ネオジム	プロメチウム	サマリウム	ュウロピッウム	カトリニウム	テルヒ゛ウム	シ゛スプロシウム	ホルミウム	エルヒ゛ウム	ツリウム	イッテルピウム	ルテチウム
	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100	101 Md	102 No	103 Lr
アクチノイド	アクチニウム	トリウム	プロトアクチニウム	ウラン	ネプッニウム	プルトニウム	アメリシウム	キュリウム	バークリウム	カリホルニウム	アインスタイニウム	フェルミウム	メンテ゛レヒ゛ウム	ノーヘ゛リウ	ローレンシウム

資源エネルギー庁Webサイト

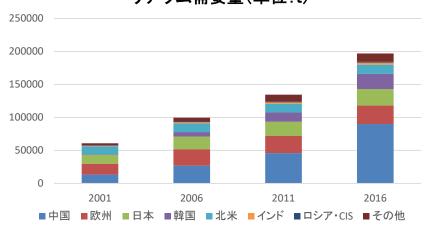
https://www.enecho.meti.go.jp/about/special/tokushu/anzenhosho/koubutsusigen.html


レアメタル備蓄

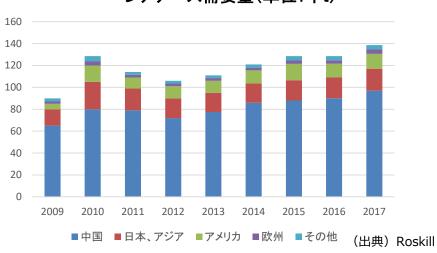
	国家備蓄	民間備蓄							
実施主体	JOGMEC	民間企業							
備蓄対象鉱種	レアメタル <mark>3 4鉱種</mark> (5 5元素) Li, Be, B, Ti, V, Cr, Mn, Co, Ni, Ga, Ge, Se, Rb, Sr, Zr, Nb, Mo, In, Sb, Te Cs, Ba, Hf, Ta, W, Re, Tl, Bi, REE(レアアース), PGM, C, F, Mg, Si								
目的	円滑な産業活動の維持及び国家経済安全保障の確立	企業の使用実態に即応した自主的な備蓄							
保管場所	国家備蓄倉庫において管理	民間企業で個別保管管理							
目標	国内基準消費量 _注 の <mark>4 2 日分</mark> (備蓄目標量の 7 割)	国内基準消費量 _注 の <u>18日分</u> (備蓄目標量の3割)							
	合計:国内基準消費量 _注 の <u>6 0 日分</u>								


資源エネルギー庁Webサイト

https://www.enecho.meti.go.jp/about/special/tokushu/anzenhosho/koubutsusigen.html


レアメタルの需要動向

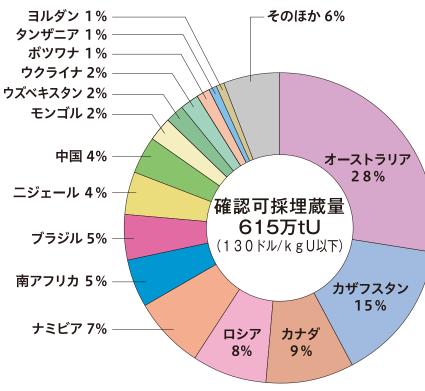
ニッケル需要量(単位:千t)



リチウム需要量(単位:t)

(出典)Roskill

レアアース需要量(単位:千t)

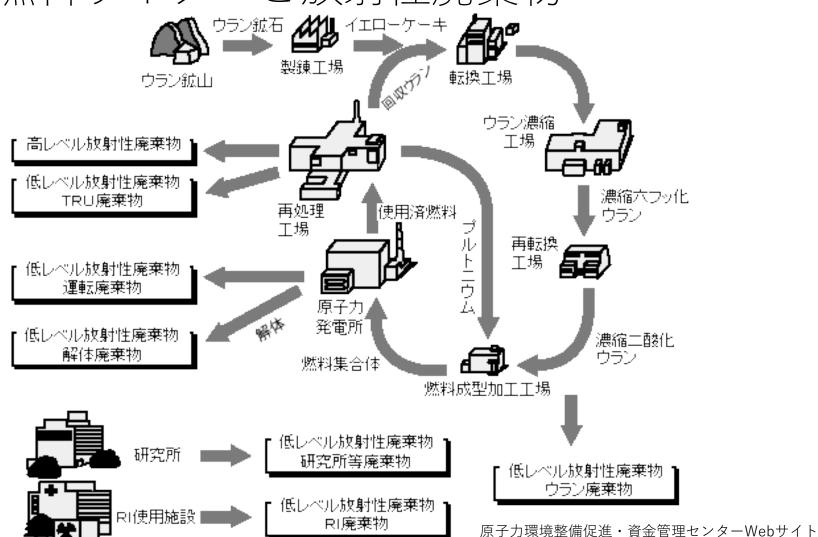


(出典)JOGMEC 鉱物資源マテリアルフロー2017

ウラン U・・・

脱炭素社会への過渡期に 重要なエネルギー

• 世界のウラン資源埋蔵量



日本原子力文化財団Web https://www.jaero.or.jp/sogo/detail/cat-02-06.html

- 日本のウラン購入契約状況 (2014)
- 長期契約·短期契約、製品購入
 - カナダ、イギリス、南アフリカ、オーストラリア、フランス、アメリカ
- 開発輸入分
 - ニジェール、カナダ、カザフ スタン

核燃料サイクルと放射性廃棄物

https://www.rwmc.or.jp/disposal/radioactive-waste/01.html

鉱物資源の今後

• 先端技術へのレアメタル需要 (様々、技術開発により使用量は削減されるが、全世界で使用 されるので、全体では需要拡大)

・特定の国で産出

安全保障上の課題も

国内ではほとんど採取できない (海底熱水鉱床など可能性はあるが)

• リサイクル技術と制度の発展

日本における資源の今

- 国内資源は少ない(輸入依存)
- ・資源輸入に伴うCO₂排出など環境問題+輸出国の環境破壊 (化石燃料、鉱石の遠距離輸送など)
- 価格上昇などの経済問題 (国民生活に直結)
- 安全保障の課題 (国際情勢により供給不安定になる場合がある)

資源循環を目指す必要性がますます高まる

課題

- 化石燃料、金属資源について、一つ興味のある物質を選び、現在の状況を調べ、将来の問題について考えてみよう。
- 明星LMS 「レポート」
- ・レポート(第6講)を選択し、200字程度で記入してみましょう。
- 日曜夜までに提出してください。