浸出水調整池の CO2 吸収能模擬実験による検討

20T7-016 木村優花 指導教員:宮脇健太郎

1・はじめに

陸上処分場の保有水について、pHが問題に なるケースが増えている。具体的には、埋立終 了後長期間経過後でも、埋立物(焼却残渣や鉱 滓など)の影響を受け埋立層内の間隙水 pH が 11以上を示す場合が多い。このため、浸出水の 最終的な流出先である水処理施設の調整池の pH が長期間にわたり排水基準の 5.8~8.6 をわ ずかに超過するため、廃止できない処分場が全 国に散見される。水処理施設の調整池での pH 低減機構としては、水処理施設の調整池水によ る希釈効果と大気中二酸化炭素の中和効果が考 えられる。水処理および廃止に向けた安定化の 観点からは、永続的に pH を基準以下に維持す る手法の検討が必要である。浸出水の pH 低減 については、大気中二酸化炭素による検討が行 われている。また、アルカリ性溶液への二酸化 炭素吸収について、pH 条件などによりフラッ クスが変化することが確認されている 1)

本報告では、水処理施設の調整池を模擬した 室内試験を実施し、pH 11 の浸出水を実験水槽 に流入させ、大気中二酸化炭素によりポンドが どの程度の pH を維持するか検討した。

2.模擬実験方法

水槽をポンド模擬槽として用いた。これは,実 処分場の水処理施設の調整池(容積 410,000m3, 深度 42m 程度)模擬浸出水として、流入水 (保有水)を Ca(OH)2で pH 11 に調整した溶液 を、ポンプを用いて 10mL/日で調整池模擬槽に 流入させた。試験条件の流量、表面積 A、容積 V、滞留時間 ΔT を調整し模擬槽で変化させた。 (試験条件 A/V*ΔTで整理)。試験条件を表 1に示す。それぞれ滞留時間 20 日間では 10.42ml、10 日間では 20.83、5 日間では 41.66を毎分ごとに模擬槽に流入した。同量の模擬水を採取した。20 日間、10 日間、5 日間の条件毎の測定項目はpH、EC、IC の濃度としている。ポンド表面積、容積 V、滞留時間の影響を確認するための試験を行い、最終 pH を確認し、PH8.6 (陸上)9(海面)を超える表に近似曲線を追加し、試験条件である A/V*ΔT を推測した。また、大気非接触条件での試験(短時間で模擬浸出水を加えpH等計測)も行った。

表 1

試験	表面積	容量	滞留時	大気
条件	(cm²)	(L)	間	接触
10	25 c m2 :	10	20	有・
5	50mm×50mm		10	無
2.5			5	

試験条件: $A/V*\Delta T$

3 · 結果

大気接触条件 pH の結果を図 1 に示す。流入水が多くなるほど徐々に PH が上昇した。図に電気伝導率 EC の変化を示す。EC は徐々に図 2 上昇した。IC の変化を図 3 に示す。IC は徐々に上昇した。

図1 模擬槽のpH変化(流入pH11)

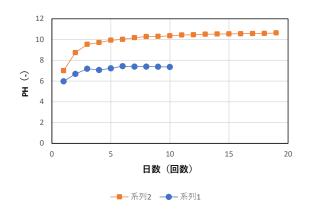


図 2 模擬槽 EC 変化(流入 pH 11)

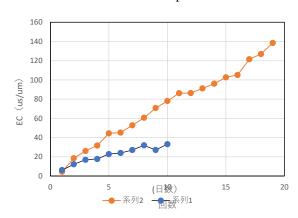


図3 模擬槽 ICの変化(流入 pH 11)

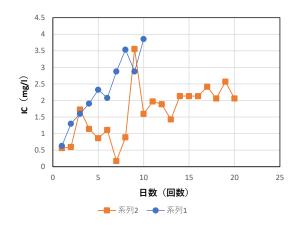
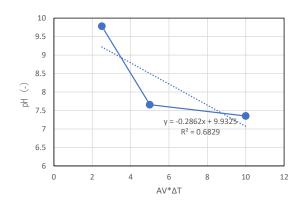



図 4 A/V×ΔT と最終 pH (まとめ)

4·考察

大気中 CO2 吸収による中和が無い場合 (図1 大気接触条件)、模擬ポンド水の PH は模擬浸出 水は20日相当の流入量でPHが約5増加した。 排水基準である pH 5.8~8.6 の基準値を大幅に 超えた。EC は約 150 増加した。IC は約 1.5 上 昇した。大気中 CO2 吸収による中和がある場 合 (大気接触条件)、模擬浸出水は20日間、10 日間、5日間ごとの計測をした。20日間10日 間の実験の時はでは PH 排出基準値を満たして いたが(7.35 と 7.657)、A/V×ΔT 2.5 (8 日間実験) の時は数値が 9.78 と大幅に基準値を超えた。流 入量を倍に増やした事により基準値を超えたと 考えられる。pH 8.6 になるようにするには A を 0.00025、V を 0.005、ΔT を 7 として 1 日 714 m 1 毎分 29.75 m 1 流入すればよいのではない のかと考えた。ECは流入水が流入したことに より溶液内のイオン濃度が上昇した。(pH 11 130us/cm) IC 大気非接触とは異なり、流入水が 流入したことにより大気中の CO2 が溶解によ り濃度は上昇した。

5・おわりに

大気非接触での浸出水の pH が 11 程度であると、pH、EC、は徐々に上昇した。IC は徐々に減少した。大気接触での浸出水の pH が 11 程度あると、pH、EC、IC、は流入水量が増えるごとに増加した。